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1. Introduction

Recently, the well-known technique of Schwinger parametrisation of Feynman diagrams [11]

has received renewed interest, funneled by the speculation of Gopakumar [8 – 10] that it

might be the key to an understanding of the AdS/CFT correspondence on the diagram-

matic level of correlation functions. This suggestion is based on the observation that the

“lifting” of free large N U(N) symmetric gauge field theory amplitudes of twist-2 operators

from the boundary into bulk AdS space has a very natural appearance when one applies the

Schwinger parametrisation to the boundary amplitudes, at least in the simplest nontrivial

case of three-point amplitudes. The particular integral representation of the bulk ampli-

tudes obtained in this manner is being interpreted as a string theory on a curved space in

the limit of large curvature; and since such a theory is currently beyond a direct under-

standing, these results consequently incited a program of trying to gain knowledge about

this particular string theory by the study of the lifted boundary field theory. According
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to the advertised model, the correspondence proceeds in two clearly distinct levels: First,

there should be a correspondence between the boundary amplitudes and an open string the-

ory including branes; second, by open-closed duality, these open string amplitudes should

be equivalent to closed string amplitudes living in the bulk (see e.g. [15]).

In this paper, we concentrate on the Schwinger parametrisation of quantum field the-

ories. In its simplest form, it is obtained by going to the momentum space representation

of a Feynman diagram derived from the path integral and rewriting it, making use of the

representation
1

q2 + m2
=

∫ ∞

0
dτ e−τ(q2+m2). (1.1)

The issue that Schwinger parametrisation can be interpreted as being generated by “world

line” path integrals is rather settled by now [19, 20]. In section 8 of Schubert’s review [19],

the question of how to treat multi loop Feynman graphs in that context is discussed, noting

that the world line formalism cannot be implemented immediately on those graphs since

— in opposition to one-loop graphs — the graph cannot be treated as a differentiable

manifold (parametrised S1), due to the vertices. The solution offered is rather a pragmatic

one: Multi-loop Feynman graphs are constructed from a one-loop “spider” graph with

several external insertions, by connecting some of the external insertions by propagators in

Schwinger parametrisation. The resulting amplitudes are then manipulated algebraically

and the loop momenta are integrated out.

It is the intention of this text to suggest a direct, stringent procedure implementing

the world line formalism also for graphs with vertices, without resorting to iterative con-

struction out of simpler graphs. We show how a multi loop Feynman graph can be treated

as one-dimensional manifold with branching points, enabling us to write down a “world

graph” formalism which delivers equivalent results (e.g., formula (4.11) on page 16) in a

consistent, “one-step” fashion. It takes the form of a simple diffusion path integral mapping

the complete Feynman graph into coordinate space, with particular continuity conditions

at the vertices. The main result reported in this article is the methodical derivation of

this new route. A side result is to offer a more detailed view on the role of generalised

Schwinger parameters, or “moduli”, of Feynman graphs.

The formalism is not restricted to a particular set of vertices, or particle types (although

it is rather natural to employ it for massless particles). From this point of view, Schwinger

parametrisation is a notion which makes sense for a Feynman graph as a whole - one should

rather speak of “world graphs” than world lines. We will show there is a close connection to

the interpretation of Feynman amplitudes as a partition sum of charged particles residing

on the graph, generalising a concept which has successfully been applied to one-loop and

two-loop graphs. It is crucial that these partition sums are in fact sums over all different

possibilities to connect the external propagators to the graph. Polynomial prefactors in the

internal momenta of the Feynman amplitudes, i.e. derivative interactions, for vector or ten-

sor particles can be included easily by introducing infinitesimal “test-dipoles” on the graph.

Let us mention at this point the connection to string theory: Bern and Kosower [3]

have shown in a long work that Schwinger parametrised amplitudes can be obtained from

the infinite tension limit of a certain open string theory, where the strings degenerate into
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point particles. The tachyonic modes of the string can be made to decouple, and the only

excitations left in this limit are the massless modes (all other modes become too massive

to be excited at all). The Feynman rules which result in this limit come out very naturally

in the Schwinger parametrised form (however see e.g. [17] for a different limit retaining

only the tachyonic modes, producing scalar φ3 theory). In fact, we can say more: The

theory of the massless vector fields obtained in this way is a Yang-Mills theory; if the

strings carry Chan-Paton factors, then it is a non-Abelian gauge theory [16]. Now, in

the usual Feynman diagrammatic calculation of amplitudes in non-Abelian gauge theories,

there is a lot of redundancy: The amplitudes corresponding to the diagrams consist of

very many different summands, and there occurs a host of cancellations between those, so

that the final result usually reduces to a comparably compact expression. When the same

amplitudes are derived by way of the infinite-tension limit of string theory, they turn out

to be very well organised so that cancellations are immediate [2, 14].

Let us mention another interesting detail: On the string theory side, we have to in-

tegrate over the so-called “string moduli”. These are parameters which label uniquely

the conformally inequivalent ways to put a metric on the string world sheet. Taking the

infinite-tension limit, the string moduli are mapped partially onto the Schwinger param-

eters. A point we want to stress is that the mathematical problems which are a major

obstruction when one tries to consider more complicated string world sheet topologies in

the infinite tension limit are understood rather naturally in the world graph limit.

We thank the referee for pointing out to us an earlier work by Dai and Siegel [4], who

explore a related approach to multi-loop amplitudes. As a starting point, they choose the

first-quantised formalism, developed by Strassler [20] and many others, which includes an

integral over the reparametrisation group of the parametrised Feynman graphs, and requires

the subsequent fixing of this reparametrisation symmetry. Their conclusions are similar,

stressing along the way the “electrical analogy” which is obtained when the momentum

flux through the diagram is set in analogy to a (vector) current. Explicitly, their approach

is spelled out only for scalar fields.

The organisation of this paper is the following: In section 2, we introduce the näıve

Schwinger representation and show how for each propagator it can be interpreted as a

diffusion kernel, implying the world line picture. In section 3, we introduce the world

graph formalism, enlarging the diffusion scheme to complex graphs, and state its main

content as a theorem. In section 4, we show the equivalence of the world graph scheme to

the partition sum of a system of charged particles residing on the graph and complete the

proof of the theorem; we give some elementary examples of the technique. Finally, in the

remaining section, we extend the formalism to vector and tensor particles.

2. World-line formalism

2.1 Schwinger parametrisation

The Schwinger parametrisation of the correlation functions of a Lagrangian field theory

in d-dimensional Euclidean space containing a set of scalar fields and an arbitrary non-

derivative polynomial interaction is based on the perturbative expansion of the effective
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k1 k2

Figure 1: Self energy diagram of φ3-theory. Dashed lines: amputated legs. Momenta are incoming.

action in momentum space. The effective action is the sum over connected, amputated

Feynman diagrams, containing massive propagators

Gm(q) =
1

q2 + m2
(2.1)

and vertices with varying coordination number n, carrying a momentum conserving factor

− cn

(2π)(
n
2 −1)d

δ(d)
(

∑n
j=1 qj

)

, where cn is the coupling and qj are the incoming momenta.

To a vertex v, we assign the external momentum kv, the total sum of the joint mo-

menta entering the diagram through all external, amputated legs of v. External legs are

thus effectively represented by vertices with non-conservation of momentum of the internal

propagators. Conversely, internal vertices will be treated as being connected to imagined

external legs with zero momentum entering the graph. Finally, the internal momenta are

integrated over.

The näıve Schwinger representation is obtained by blindly representing each internal

propagator (2.1) by formula (1.1). We have thus for each propagator j a Schwinger modulus

(Schwinger parameter) τj. As a result, loop momenta integrations are Gaussian and can

be performed explicitly, leaving only the integrals over the Schwinger parameters. The

result is the well-known formula which reduces to a certain sum of “two-trees” of the graph

(e.g. [13]); the precise form is irrelevant here.

Formula (1.1) has an interpretation based on the diffusion equation. Each vertex v ob-

tains an additional coordinate xv ∈ R
d; momentum conservation at v is represented by the

integral δ(d)
(

∑n
j=1 qj

)

= (2π)−d
∫

ddxv exp−
(

ixv ·
∑n

j=1 qj

)

. A Schwinger parametrised

propagator running from vertex x1 to vertex x2 evaluates to

Gm(x1 − x2) =

∫ ∞

0
dτ

∫

ddq exp
(

−i(x1 − x2) · q − τ(q2 + m2)
)

= πd/2

∫ ∞

0
dτ

1

τd/2
exp−

(

(x1 − x2)
2

4τ
+ m2τ

)

. (2.2)

If there are external legs carrying momentum kv attached to vertex v, then we are left with

the factor

exp−(ixv · kv).

As an example, the one-loop self energy of scalar φ3 theory (cf. figure 1) is

I(k1, k2) =
1

2
·

c3

(2π)
3d
2

∫

ddx exp (−ix · k1) ·
c3

(2π)
3d
2

∫

ddy exp (−iy · k2)

πd/2

∫ ∞

0
dτ1

1

τ
d/2
1

exp−

(

(x − y)2

4τ1
+ m2τ1

)

(2.3)

πd/2

∫ ∞

0
dτ2

1

τ
d/2
2

exp−

(

(x − y)2

4τ2
+ m2τ2

)

.
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By shifting y → y + x, we eliminate x from the quadratic exponent; the x-integration is

then seen to represent external momentum conservation.

The propagator (2.2) is related to the well-known Gaussian kernel for the Wiener path

integral describing the diffusion of a particle for a time τ in d (Euclidean) dimensions. We

can write it formally as

Kτ (x1, x0) =Z−1
0

∫

x(α)=x1

x(0)=x0

Dx(t) exp−

∫ α

0
dt

{

1

4
ẋ2

}

=

(

1

4πα

)d/2

exp−
(x1 − x0)

2

4τ
. (2.4)

The prefactor 1
4 in the exponent is chosen in order to agree with the standard literature,

e.g. [20]. The kernel is normalised to
∫

ddx1 Kτ (x1, x0) = 1. (2.5)

Comparing with (2.2), we find that the propagator for a scalar quantum field can be

expressed through the heat kernel by

Gm(x − y) =πd/2

∫ ∞

0
dτ

1

τd/2
exp−

(

(x − y)2

4τ
+ m2τ

)

=(2π)d
∫ ∞

0
dτ exp

(

−m2τ
)

Kτ (x − y). (2.6)

One could interpret the exponential prefactor as a dissipative term absorbing the diffusing

particle. The particle mass m enters only in the dissipative part, and for m = 0, we

are left with the dissipation-free heat kernel. This formula demands [τ ] = L2, so we

must be cautious when we interpret τ as “time” (the reason is that we have left out the

diffusion constant). The upshot is that the Euclidean field theory propagator is obtained

by averaging over diffusion “times” τ , with a weight factor falling off exponentially. The

diffusion picture does not extend to cover vertices, as it is.

In this approach, the Schwinger parametrised form of the correlation function reads

for any mass

GG (k1, . . . , kn) =
(2π)

nd
2

Sym(G )

(

∏

vertices v

−cv

∫

ddxv e−ikv·xv

)

∏

propagators j

∫ ∞

0

dτj

(4πτj)d/2
exp−

(

(x1(j) − x2(j))
2

4τj
+ m2τj

)

. (2.7)

Here, Sym(G ) is the symmetry factor of the graph G , and all powers of 2π at the vertices

have been cancelled against the propagators.

2.2 Conformal propagators

The Schwinger parametrisation is useful also to represent conformal propagators

G∆(x − y) =
1

|x − y|2∆
. (2.8)
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The scaling behaviour will be contained solely in a τ -dependent prefactor. Introducing a

Schwinger-like integral representation in coordinate space

1

(x2)∆
=

1

Γ(∆)

∫ ∞

0
dα α∆−1e−αx2

, ℜ∆ > 0,

we can compute the Fourier transform as
∫

ddx e−iq·x 1

(x2)∆
=

1

Γ(∆)

∫

ddx e−iq·x
∫ ∞

0
dαα∆−1e−αx2

=
π

d
2

Γ(∆)

∫ ∞

0
dα α∆− d

2
−1e−

q2

4α

by completing the square. Substituting α → (4τ)−1, we get the usual Schwinger parametri-

sation

G∆(q) =
2d−2∆π

d
2

Γ(∆)

∫ ∞

0
dτ τ

d
2
−∆−1e−τq2

. (2.9)

This representation is special insofar as the exponential part takes exactly the form of a

massless propagator. The only modification is the power of τ in the Schwinger kernel. If

ℜ∆ < d
2 , we can evaluate the integral explicitly to obtain

G∆(q) =
2d−2∆π

d
2 Γ(d

2 − ∆)

Γ(∆)
|q|2∆−d. (2.10)

Note that even when ∆ is not within the bounds indicated, we may by analytic continuation

reach almost every complex ∆.

3. World-graph formalism

Bosonic string theory can be formulated as a theory of d scalar “coordinate” fields living

on the two-dimensional string world sheet (a Riemann surface which can have an arbitrary

topology). In the infinite string tension limit, strings are effectively reduced to point-like

particles (string shrunk to zero length). Only very few string excitations survive this limit,

and it has been shown that it can be consistently treated as a field theory.

The Feynman graphs of the limiting field theory may be quite literally interpreted as

the shrivelled remains of the string world sheet under infinite tension. As they are one-

dimensional, it has become customary to refer to the propagators in this context as “world

lines”; they are sewn together at the vertices. On the technical level, scattering amplitudes

mediated by string interactions are turned into a Schwinger parametrised version of field

theoretic perturbation theory. From a world sheet point of view however, the discrimination

between “free strings” and “vertices” is artificial; given a section of the world sheet, the

question of whether it is a part of a “vertex” or not does not make sense at all.

Let us reverse the argument and ask whether there is an approach to field theory which

resolves the special treatment of the vertices. This approach is found in the generalisation

of Schwinger parametrisation. Instead of using “world lines”, we will employ the concept

of a “world graph” — a Feynman graph G is treated as a manifold with branching points

– 6 –
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Figure 2: Three different graphs grouping into the same equivalence class under class scheme A.

at the vertices which is mapped into the ambient space R
d. The world graph path integral

is a weighted integral over all allowed embeddings of this kind. No longer enter external

particles the world graph at “special points” (vertices); rather, they are implemented by

sliding “operator insertions” which have to be taken care of in the path integral.

At the branching points (vertices) of the world graph, it will be required to impose a

continuity condition. It is precisely this continuity condition which marks the difference

between world line and world graph formalism. The representation of the propagators is

taken over unmodified from the world line formalism: We associate a “length” τj to each

propagator in the graph; the final amplitude is obtained by performing the world graph

path-integral and integrating over all lengths with the appropriate weight factor. The

lengths τj will be called “moduli”, in reference to the term used in string theory, where

the moduli characterise different conformal equivalence classes of Riemannian metrics on

the string world sheet. The parameter space for the moduli is the moduli space Mod[G ].

The “dimension” dim[G ] of a graph G is by definition the dimension of its moduli space

Mod[G ]. It is important to recognize that the positions tj of the operator insertions are part

of the moduli. Graphs which are assigned such Schwinger lengths will be called “metric”,

in distinction to the usual Feynman graphs without Schwinger lengths, which will be called

“non-metric”.

3.1 Equivalence classes and cells of moduli space

In the usual Schwinger parametrised Feynman graphs (world line formalism), the order of

the external (amputated) legs entering the graph is fixed. The integration of the Schwinger

parameters varies just the distances in-between them; this is equivalent to letting the

insertions slide over the branches of the graph, without changing their order, and integrating

over all possible branch lengths.

The world graph formalism does not admit a special treatment of vertices; so we should

expect that it makes sense to integrate over all admissible localisation points and orders

of the insertions. When we integrate over moduli space and let the operator insertions

slide over the diagram, we find a natural sum over different orderings of the external legs

on the same branch of the diagram, and also include the case where the external legs are

inserted onto different branches (see figure 2). This clearly means that using the world

graph formalism, we necessarily will obtain sums over different Feynman graphs. Each

sum defines a subset of the total set of all admissible Feynman graphs (where we accept

– 7 –
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the Feynman rules as a priori given), and because the world graph formalism should be

equivalent to the usual sum over Feynman graphs, it is important that each graph is part

of precisely one such sum. In other words, the set of all Feynman graphs is partitioned into

(mutually exclusive) equivalence classes. The class containing the connected graph G will

be denoted [G ]; it is a set of non-metric connected Feynman graphs. The moduli space cells

Mod[G ] are in fact parametrising these equivalence classes, rather than just single graphs.

Given a class g ≡ [G ] and a particular set of moduli τ ∈ Mod g, the particular metric graph

identified by the moduli will be denoted g(τ). The moduli space Mod g is a measure space

of dimension dim g, and the moduli τ are coordinates on this space. The measure on Mod g

is derived from the proposed equivalence to the usual diagrammatic computation.

We will suggest a set of rules telling us how, given a graph G , we can subsequently

generate all G ′ ∈ [G ] in the equivalence class; it is easy to show that these relations are

reflexive, symmetric and transitive, and therefore define a true partitioning into equivalence

classes. Let us point out that there are several consistent ways to define the classes; we

discuss them in turn.

As a prerequisite, we have to classify the operator insertions: Each insertion is con-

nected to a number of external legs entering the diagram, its “external valency”; in the

simplest case, it will be one. We assume that all external legs are distinguishable. Likewise,

there is a number of internal legs connected to the insertion (the “internal valency”). The

sum of external and internal valency is the total valency of the insertion, and this settles

the coupling needed at the insertion (ignoring the question of different particle types for the

moment). We stress once more that “ordinary” vertices are treated throughout as operator

insertions with external valency 0 in the world graph formalism.

Definition (Equivalence Class A). Given a graph G , the equivalence class [G ] is generated

by letting insertions with internal valency 2 slide over the complete graph, changing their

order as they go along. Insertions with internal valency other then 2 (1 or larger than 2)

cannot slide; however, if there are several insertions with identical valencies (internal and

external), then the external legs attached to these insertions may be permuted groupwise;

i.e. if several external legs are attached to the same insertion in G , then they must be

attached to the same insertion for every graph in [G ] (external legs are “sticky”).

The continuous moduli are thus given by coordinates of the sliding insertions on the

graph, and by the metric of the underlying “torso”;1 in addition, there are discrete moduli

counting possible permutations of the external legs.

This definition may seem a little arbitrary; however, it is the one which is best suited

to the statistical analogy which will be introduced below. An example of discrete moduli is

given in figure 3. We will nevertheless write the integral over moduli space as
∫

ddim[G ]τ .

There are further possibilities: A rather strict one is

Definition (Equivalence Class B). Given a graph G , the equivalence class [G ] = {G } is

minimal. There are no permutations or rearrangements. The corresponding moduli space

Mod[G ] is made up of the usual Schwinger parameters.

1Symmetries will be discussed below.

– 8 –
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1 2 2 1

Figure 3: External legs 1 and 2 can be interchanged without modifying the valency of the insertions.

There is a discrete modulus (eg τ12 ∈ {12, 21}).

This is the class concept of the world line formalism. Finally, we may be very liberal

and make

Definition (Equivalence Class C). Given a graph G , the equivalence class [G ] contains all

graphs which can be assembled by cutting all internal propagators of G and reconnecting

the remaining insertions (retaining their internal valency) in an arbitrary manner, under

the constraint that the resulting graph is connected.

The moduli space counts all different possible topologies, and on each topology there

are continuous moduli controlling the metrics.

Note that this includes “discrete permutations”; the external legs are still sticky. It is

easy to see that the loop number is constant within a class; the remaining class invariants

are derived from the types of operator insertions. This latter class concept is the one

which is most closely related to closed string theory: A closed string world sheet with finite

tension is topologically characterised solely by its loop number. Incidentally, it is the one

which is obtained following the approach of Bern and Kosower [3].

In a wider sense, the moduli space of all possible graphs is made up of different “cells”

Mod[G ]. In this way, the total moduli space (containing all graphs) has a natural cell

structure [10]. The class concepts introduced regulate the extent of these cells. It is

obvious that B ≤ A ≤ C, i.e. B defines a subpartitioning of A, and A subpartitions C.

The partitioning A seems to be the one which incorporates systematically the world graph

concept without making the classes unnecessarily large. This should not be mistaken for a

physical statement: It is rather one of convenience.

On the other hand, the partitioning C is the only one treating internal and external

valencies alike. This can be seen by following example: Consider two vertices v and w

sliding along one branch of a graph G ; assume that these vertices are distinguishable (ie

by their total valency); for concreteness, assume that vertex v is 3-valent and vertex w 4-

valent. We have to decide what to do with the one remaining leg of v and the two remaining

legs of w. If the remaining legs of the vertices are all external (and thus amputated), then v

and w may exchange their order on the branch within [G ] by A. However, if the remaining

legs are connected internally by a propagator to some other vertex of the graph, they may

not, by A. This is not so in C: There, diagrams are completely rewired, and every ordering

is included.

For the purpose of the examples given in this text, the concept A is broad enough.

The generalisations to C are immediate in most cases. For this reason, we will in the rest

of this text adhere to the class concept A.

– 9 –
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Symmetry factors. Each Feynman graph has to be divided by a symmetry factor which

is obtained in the usual way from the perturbative expansion (it is the size of the auto-

morphism group of the graph). These factors are identically taken over in the world graph

formalism. If the topology of the underlying diagram varies within a cell of moduli space,

the symmetry factor may change. For an important practical aspect, see however the

comments at the end of section 3.2.

Particle types. If there are different sorts of particles involved, then every propagator

has to be assigned a particle type. Two graphs of the same topology are different by

definition if the particle types are not completely identical. The particle types of external,

amputated legs are fixed by assumption. In this case, we make the agreement that all

possible assignments of particle types to the internal propagators which can be satisfied by

a set of vertices from the Feynman rules are part of the class. As we generate the graphs in

a class, each time the topology changes or one insertion crosses another, we have to change

the particle type of the propagators. This implies that the couplings have to vary as well.

There will be topologies that can be fulfilled (because the Feynman graph corresponding to

this particular ordering can be constructed from the couplings) and topologies that will fail

(because there is no corresponding Feynman graph). There have to be additional, discrete

moduli to keep track of particle types and couplings.

As far as we allow arbitrary sets of vertices and particles, this is already the end of

the story. When the analogy to string theory is deepened however, we expect that string

theory puts serious restrictions on the possible types of particles and vertices, and their

coupling constants. The simplification of the amplitudes which has been mentioned in

the introduction should be present only for very particular theories, and supposedly the

field theories motivated by string theory are strong candidates here. Eg, we expect such

simplifications for non-Abelian gauge theories. The choice of a suitable class concept is at

the heart of these supposed simplifications.

Although, if we take serious the string theory parallelism, we should only consider

massless propagators, massive particles can without problems be included into the scheme,

with certain qualifications. If all propagators have the same mass, then the mass prefactor

is trivially given by the total length of the graph. If the propagators carry different masses,

we will not be able to give such a concise description: The operator insertions describing

external legs change the “phase” (mass) of the world graph lines. A possible way out is

the inclusion of a further “particle type” or mass field m(t) on the world graph and to

describe the operator insertions as symmetric matrices connecting different “mass” spaces

(see section 4.6 below).

3.2 Formulation of world-graph path integral

Let us recapitulate: To compute the amplitude corresponding to an equivalence class of

Feynman graphs g, we first select one particular metric graph g(τ) by a choice of Schwinger

parameters τ ∈ Mod g. On g(τ), we put a theory of d Euclidean massless scalar fields

x : g(τ) → R
d whose dynamics is described by a diffusion (Wiener) process. External legs

are treated as operator insertions e−ikv·x(tv); and after integrating the fluctuations of the d

– 10 –
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coordinate fields x(t), we have to integrate over the moduli space Mod g. This contains an

integral over all possible positions of the operator insertions on g(τ) as well as all possible

Schwinger lengths of the propagators with the appropriate measure; there is a sum over the

discrete moduli, controlling permutations of the external legs, and finally over the different

topologies in the class g.

Note the important distinction between points on the graph g(τ) as a (singular) man-

ifold which will be denoted by small Latin letters s, t, v ∈ g(τ) and continuous “moduli”

τ, T ∈ R+, denoting distances or lengths on the graph. The location of the operator inser-

tions is determined by the moduli. By choosing a coordinate system (parametrisation) of

the graph resp. the propagators, a point t ∈ g(τ) can sometimes be assigned a number -

its coordinate. The moduli, on the other hand, are independent of a choice of coordinates.

Instead of developing step-by-step the world graph formalism, we will state at once the

respective form of the world graph path integral and prove subsequently that the amplitude

obtained in this way is indeed identical to direct computation by the usual Feynman rules.

Without loss of generality, we will study only connected graphs in the sequel. We need

some technical tools to begin with.

Introduce for vector-valued functions f, g : g(τ) → R
d a real scalar product

〈f, g〉 ≡

∫

g(τ)
dt f(t) · g(t). (3.1)

It is similarly defined for scalars. This product defines a real Hilbert space of functions on

the metric graph g(τ).

The graph Laplacian is an operator acting on functions defined on the graph as a

one-dimensional manifold with branching points at the vertices.2 This is not the discrete

graph Laplacian; we define the Laplacian △ = ∂2
t for functions on the graph as the one-

dimensional continuous Laplacian along the parametrised links of the graph; at the vertices,

we get a distributional contribution

△f(t) =
∑

vertices v





∑

adjacent links l

lim
(s on l)→v

f ′(s)



 δv(t) + propagator contribs. (3.2)

(the Dirac distribution δv(t) on the graph is defined as
∫

g(τ)
dt δv(t) g(t) = g(v)

for a continuous function g : g(τ) → R
d). While the first derivative of a function on the

graph demands an orientation of the links, the second derivative is well-defined without

this concept. The rule (3.2) applies also at vertices with only one internal propagator

attached (such vertices have two or more external propagators attached).

Usually, we need a domain which makes the graph Laplacian a self-adjoint operator.

The treatment of the graph Laplacian is not much different from the well-known treatment

2These graphs have recently been termed “quantum graphs” in the physics community. For an intro-

duction and overview, see [12] and references therein.
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of the one-dimensional Laplacian △ on the unit circle S1, since the graphs we are consider-

ing are, with exception of the vertices, compact one-dimensional manifolds. A self-adjoint

domain D(△) can be constructed by closing the subspace of continuous functions with

respect to the finite Sobolev norm ‖f‖2
H2 =

∫

g(τ) dt [f2 + (∂tf)2 + (△f)2]; on this domain,

the graph Laplacian is symmetric by integration by parts (the marked difference to the

S1-case is the use of the graph derivative ∂t in this Sobolev norm). Since the domain is

maximal, this is also the domain of self-adjointness.

Let tj ∈ g(τ) be the point on the graph where the external momentum kj enters the

graph; then in the world graph path integral, we have to include a factor e−ikj ·x(tj). For

a concise notation, the external momentum “density” can be modelled by a generalised

function

k{τ} : t 7→
∑

j

kjδtj (t). (3.3)

The argument {τ} indicates that the positions of the operator insertions are parametrised

by the moduli. Thus we have

∑

j

kj · x(tj) =

∫

g(τ)
dt x(t) · kjδtj (t) = 〈x, k{τ}〉. (3.4)

The contribution of all operator insertions in the path integral is then given by a factor

e−i〈x,k{τ}〉. We will start with the simpler situation where all propagators have the same

mass m(t) ≡ m; then the mass term will contribute a factor exp
(

−m2|g(τ)|
)

, where |g(τ)|

is the total length of the graph.

Theorem 1. Let G be a compact Feynman graph. Let kj , j = 1 . . . n be a collection of

external momenta. The amplitude corresponding to the sum of all graphs in the equivalence

class g = [G ] is given by the formal world graph path integral

G[G ](k1, . . . , kn) = (2π)
nd
2

(

∏

vertices v

−cv

)

∫

Modg

ddimgτ

Sym(g(τ))

e−m2|g(τ)|Z0(g(τ))−1

∫

C(g(τ))
D(x) exp−

(

−
1

4
〈x,△x〉 + i〈x, k{τ}〉

)

, (3.5)

where Z0(g(τ)) is a (formal) normalisation depending on the moduli.

The domain C(g(τ)) is a reminder that the paths are supposed to be continuous at

the vertices. We stress once more that the positions tj of the operator insertions are part

of the moduli. The normalisation Z0(g(τ)) will be determined below.

There is a subtlety concerning the symmetry factors in this formula: When the symme-

try factors are taken over from the usual perturbative expansion, they may vary in general

as the positions of the external insertions are varied. On the other hand, the symmetry

factor could be determined with all external insertions removed. Since the symmetry factor

is the size of the automorphism group of the graph, we would expect it to increase gen-

erally (since without the external insertions, there are less distinguishable features on the

graph). When the external insertions are now again included, we have to take into account
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b.i) ii) iii)a.

Figure 4: Example for symmetry factor counting. a. Subgraph from a bigger graph. The symmetry

factor of this loop is 1, since there is an external insertion (X) which allows to distinguish both

loop handles. b.i) The subgraph without the external insertion is divided by a symmetry factor 2,

since both loop handles are indistinguishable. ii) + iii) The modulus determining the position of

the external insertion may now place it on either handle of the loop. Since the resulting graphs are

topologically equivalent, they add identically and just cancel the factor 1/2.

all possible insertion positions, and parametrise them by additional moduli. The point is

that features of the graph which are indistinguishable from the point of view of the graph

automorphism group are very well distinguishable from the point of view of the moduli.

This causes an extra multiplicity which exactly cancels the surplus symmetry factors of

the underlying graph without external insertions (see figure 4 for an illustration).

4. Interpretation as an effective theory of point particles carrying vector

charges on the graph

In order to prove the theorem, we will reformulate the world graph path integral in such a

manner that it will be seen to be equivalent to the partition function of a classical system

of charged particles moving on the graph. This result is closely related to the results of

Schmidt and Schubert [18], although we choose a different language (see also [13, 6]). It is

reminiscent of the Born-Oppenheimer approximation to the hydrogen molecule, where after

determining the effective potential for the nuclei mediated by the electrons, one analyses

the motion of the nuclei in this effective potential (integration over moduli space). This is

an interesting result in itself, but it will also aid the proof.

Consider the Gaussian integral in (3.5). The integration of the global translation

degree of freedom yields the usual factor (2π)dδ(d)(
∑

j kj), so

∫

C(g(τ))
D(x) exp−

(

−
1

4
〈x,△x〉 + i〈x, k{τ}〉

)

∼ (2π)dδ(d)
(

∑

j

kj

)

exp
〈

k{τ},△−1k{τ}
〉

.

The exponent will be very important later on. It defines an “interaction potential”

Veff(t1, . . . , tn) of the operator insertions by

Veff(t1, . . . , tn) = −
〈

k{τ},△−1k{τ}
〉 (

∑

j

kj = 0
)

.
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If we collect all normalisations into

Z−1
eff (g(τ)) = Z0(g(τ))−1

∥

∥

∥

−△

4π

∥

∥

∥

−d/2

+
(4.1)

(read further), then

Z0(g(τ))−1

∫

C(g(τ))
D(x) exp−

(

−
1

4
〈x,△x〉 + i〈x, k{τ}〉

)

= (2π)dδ(d)
(

∑

j

kj

)

Z−1
eff (g(τ)) e−Veff (t1,...,tn).

This formula deserves a few comments on the graph Laplacian △. It is easy to see that

△ 1 = 0, so the kernel of △ is nonempty and △−1 is not uniquely defined in the first place.

We therefore declare that we wish to study the △−1 obeying

〈1,△−1f〉 = 0, f ∈ Dom(△−1) (4.2)

(this scalar product is vector-valued, as the left hand side is a scalar and the right hand side

is a vector). −△ is a positive operator and its kernel consists of the constant functions.

It has a pure point spectrum, as g(τ) is compact. In the determinant (4.1), we should

therefore ignore the 0 eigenvalue on the right-hand side as it has been already taken care of

in the explicit inclusion of momentum conservation. This is indicated by the symbol ‖.‖+.

On the other hand, 〈1,△g〉 = 0; so △−1f is only defined for f with 〈1, f〉 = 0. But

〈

1, k{τ}
〉

=
∑

j

kj = 0

precisely due to momentum conservation.

Näıvely, we would interpret the effective pair potential between two insertions kiδti

and kjδtj as

−2〈kiδti ,△
−1kjδtj 〉,

however, as it stands, δtj 6∈ Dom(△−1) because 〈1, δtj 〉 = 1. There is a canonical solution

to the problem.

While δti is not in the domain of △−1, the difference δij ≡ δti − δtj certainly is. We

may take advantage of this by employing repeatedly the momentum conservation condition
∑

j kj = 0 (in the first and third equality) as

〈

∑

i

kiδti , △
−1
∑

j

kjδtj

〉

=
〈

∑

i

kiδi1, △
−1
∑

j

kjδj1

〉

=
∑

i,j

(ki · kj)
〈

δi1, △
−1δj1

〉

=
1

2

∑

i,j

(ki · kj)
〈

δi1 − δj1, △
−1(δj1 − δi1)

〉

= −
∑

i<j

(ki · kj)〈δij , △
−1δij〉.

Defining the pair potential

ϕ(t, t′) = 〈δt − δt′ , △
−1(δt − δt′)〉, (4.3)
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the total effective potential is

Veff(t1, . . . , tn) =
∑

i<j

(ki · kj)ϕ(ti, tj). (4.4)

While we have used total momentum conservation, we find a pair potential which is nev-

ertheless independent of the positions of the other charges on the graph. It is a continuous

function on g(τ) × g(τ) and bounded (so it is weak). By definition, ϕ(t, t) = 0. As −△−1

is a positive operator, in general ϕ(t, t′) ≤ 0. This implies that the interaction between

parallel vector charges is a repulsive one, since (k · k)ϕ(t, t) ≥ (k · k)ϕ(t, t′) for all positions

t, t′ ∈ g(τ) and charges k ∈ R
d: Spatial separation of the charges is energetically favoured.

Putting everything together, the total amplitude (3.5) resulting from the equivalence

class g = [G ] can be written as

G[G ](k1, . . . , kn) = (2π)
nd
2 (2π)dδ(d)

(

∑

j

kj

)(

∏

vertices v

−cv

)

∫

Mod g

Z−1
eff (g(τ)) ddimgτ

Sym(g(τ))
exp



−
∑

vertices i < j

(ki · kj)ϕ(ti, tj) − m2|g(τ)|



 (4.5)

(note that the interaction has been written here as a true pair potential, i.e. the sum extends

over each unordered pair {i, j} only once). The (vector valued) potential generated by all

charges on the graph is

Utot(t) =
∑

vertices j

kjϕ(t, tj), t ∈ g(τ), (4.6)

and we have
∑

vertices i < j

(ki · kj)ϕ(ti, tj) =
1

2

∑

vertices i

ki · Utot(ti). (4.7)

The potential on the graph fulfills

△Utot(t) = −2k{τ}, (4.8)

so in between the insertions, Utot(t) is a linear function (with vanishing second derivative).

4.1 Proof of theorem 1

The proof starts from the direct Schwinger representation (2.7) valid also for massless

propagators. We introduce a matrix notation for the exponent. Define the symmetric

covariance matrix C ∈ MV (R) as follows: if v 6= w, then

Cvw = −
1

2

∑

j(v↔w)

τ−1
j (v 6= w). (4.9)

The sum extends over all propagators j connecting v and w directly; if there is no propaga-

tor connecting v and w directly then the matrix element Cvw = 0. The diagonal elements
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are then chosen in such a way that the sum of each row/column equals zero. The matrix

C is a linear combination of elementary matrices of the formEvw
ij = δv

i δv
j + δw

i δw
j − δv

i δw
j − δw

i δv
j .

These matrices generate exactly the squares of the coordinate differences

xTEvwx = (xv − xw)2,

with the silent understanding that the entries xv ∈ R
d of the vector x are themselves

coordinate vectors. In terms of these building blocks,

C =
1

2

∑

v<w

(

∑

j(v↔w)

τ−1
j

)Evw. (4.10)

Using the matrix C, we may write the amplitude (2.7) as

GG (k1, . . . , kn) =
(2π)

nd
2

Sym(G )

(

∏

vertices v

−cv

∫

ddxv

)

(

∏

propagators j

∫ ∞

0

dτj

(4πτj)d/2

)

exp
(

−
1

2
xT Cx − ikT x − m2

∑

j

τj

)

.

We can say a few things about the spectrum of C. Let e = 1√
V

(1, 1, . . . , 1)T . By con-

struction, Ce = 0. Because we consider connected graphs, the kernel of C contains only

multiples of e. Furthermore, because xT Cx is a sum of squares and never vanishes except

when all xv coincide, C is strictly positive with the exception of the eigenspace generated

by e.

For the purpose of integrating ddxv , we have to invert the singular matrix C. One can

easily see that the 0 eigenvalue again enforces momentum conservation. The generalised

inverse

C inv = lim
c→∞

(C + ceeT )−1.

always exists, because the eigenvector e decouples, and C is strictly positive elsewhere.

When we insert the momentum-conserving δ-distribution in the end, we have to include a

factor V d/2 because of the normalisation of the eigenvector e. The amplitude is thus

GG (k1, . . . , kn) =
(2π)

nd
2

Sym(G )
(2π)dδ(d)





∑

j

kj





(

∏

vertices v

−cv

)





∏

propagators j

∫ ∞

0

dτj

(4πτj)d/2



V d/2

∥

∥

∥

∥

C

2π

∥

∥

∥

∥

−d/2

+

exp



−
1

2
kT C invk − m2

∑

j

τj



 . (4.11)

The non-singular part of the determinant can be obtained by

‖C‖+ = det(C + eeT ).
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Noting that the “ordinary” Schwinger parameters τj which we have used are in one-to-one

correspondence to the continuous moduli of the equivalence class scheme B, we can easily

obtain a sum over the classes of scheme A or scheme C by summing over the necessary

orderings of the operator insertions, and over the discrete moduli defining the permutations

of the insertions, and possibly over graph topologies (this is possible since the equivalence

classes B are subclasses of A and C). Hence, equality with theorem 1 is established if we

can show that the exponential coincides with the one in (4.5), i.e. if

C inv
ij = ϕ(ti, tj). (4.12)

C inv should be the matrix analog to the pair potential ϕ. Rather than proving this formula

directly, we compute

∑

jl

Cijϕ(tj , tl)kl =
∑

j

CijUtot(tj)

=
1

2

∑

propagators l
ending at vertex 2(l) = i

Utot(ti) − Utot(t1(l))

τl
=

1

2

∑

prop.s l
with 2(l) = i

U ′
tot(t)

∣

∣

∣

t on l
= ki

by the fact that the potential is linear along the propagators, and equation (4.8). This

proves (4.12). By comparison, we find that the normalisation constant must be given by

Z−1
eff (g(τ)) = V d/2

∥

∥

∥

C

2π

∥

∥

∥

−d/2

+

∏

propagators j

1

(4πτj)d/2
. (4.13)

This concludes the proof.

As a side-effect, we have found a closed formula for the normalisation Z−1
eff (g(τ)). In

many cases, the following lemma states a more useful form:

Lemma 2. The measure Z−1
eff (g(τ)) ddimgτ on moduli space Mod g is given by

Z−1
eff (g(τ)) =

(

∏

vertices v

∫

ddxv

)

δ(d)(x1)
∏

propagators j

(

1

4πτj

)d/2

e
− 1

4τj
(x1(j)−x2(j))

2

,

where x1(j) and x2(j) are the endpoints of the propagators and x1 is an arbitrary vertex on

the graph.

Proof. Equate (4.11) and (2.7). Pick an arbitrary vertex x1. Integrate
∫

ddk1 and put all

other external momenta kj to zero, j = 2 . . . V . The proposed expression is obtained by

substituting equation (4.13).

4.2 Coincidence of vertices: cell structure of moduli space. Renormalisation

If the modulus τj associated to any one propagator in a graph g(τ) shrinks to 0 (see

figure 5), the two adjacent vertices concur in the limit. It is important to realise that there

is a fundamental difference between the limit τj → 0 of the graph g(τ), and the graph g
′(τ ′)

containing a single vertex, obtained through fusion of the pair of adjacent vertices (τ ′ are
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τjτj

Figure 5: (left) Section of metric graph g(τ) containing a propagator with modulus τj . The

amplitude contains the product c2

3
of coupling constants. (middle) While τj → 0, the insertions are

approaching each other. Still, the amplitude is proportional c2
3. (right) After the insertions fuse,

the new metric graph g
′(τ ′) is proportional c4.

“reduced” moduli, removing τj from the moduli τ). While the modulus τj is a continuous

parameter, a coordinate parametrising the integrand of the moduli space integration, the

hypersurface τj = 0 lies on the boundary of Mod g and therefore has measure zero; so it

does not contribute (for divergences, so below).

In contrast, the class g
′ - viewed as an independent contribution to the total correlation

- has a nonvanishing measure in general. That g
′(τ ′) and g(τ)|τj=0 are truly different can

also be seen from that fact that the valency of the fused vertex and therefore the prefactor

assembled from the product of coupling constants is different. In technical terms, g
′ specifies

a different cell of moduli space.

It is interesting to study the global structure of the complete moduli space, and examine

the relations between different cells. Following the literature, we claim that Mod g
′ ⊂

∂ Mod g, i.e. the cell resulting if one (or several) moduli τj → 0 makes up part of the

boundary of the original cell [10]. For the dimensions of the adjacent cells g and g
′,

obviously dim g
′ < dim g. In this way, the moduli space has a natural complex structure

(in the topological sense).

Another kind of boundary is reached in the limit τj → ∞: Momentum transfer through

the propagator is increasingly suppressed; this cell boundary is made up of the graph where

the propagator is missing out altogether. Note that the limiting graph still contains two

propagators on both sides, as well as additional 2-valent vertices (mass terms). It may

happen that the graph falls apart into two components in this limit; a systematic treatment

therefore has to include disconnected graphs.

This opens the door for speculations whether there occurs an ultimate simplification

in the amplitude when we extend the sum over all different cells of moduli space (prior to

integration of the moduli). There is one context where this is indeed required, namely in

renormalisation. Rewriting the näıve Schwinger parametrisation of the propagator as

lim
ε→0+

∫ ∞

ε
dτj e−τj(q

2+m2) = lim
ε→0+

e−ε(q2+m2)

q2 + m2
, (4.14)

in the limit ε → 0, the suppression of high q2 momentum contributions due to the regu-

larising exponent vanishes and a UV divergence is a possible consequence. We make the

following

Assumption. Cancellations due to renormalisation are local in moduli space.

It is immediate that the necessary (formally infinite) counterterms must come from

the neighbouring moduli space cell reached in the limit τj → 0.
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For IR divergences, rewrite the Schwinger parametrisation of the massless propaga-

tor as

lim
ε→∞

∫ ε

0
dτj e−τjq2

= lim
ε→∞

1 − e−εq2

q2
; (4.15)

it is the limit τj → ∞ which is responsible for a possible IR divergence at q2 → 0.

Correspondingly, the IR “counterterms” are to be obtained from the diagram without the

propagator in question. It has a regularisation mass term coming from the unobservable

background modes coupling to the fields.

Viewing renormalisation in the geometrical moduli space picture, it is obvious that the

cancellation of divergences is independent of the particular moduli space parametrisation.

A renormalisation example will be given in section 4.4.

As an intriguing possibility, it is imaginable that the moduli space integrations can

be formulated as integrals of a total divergence; in that case, by Stokes’s Theorem, they

might be reduced to an integral over boundary terms only, even if we cannot expect the

boundary terms to have a direct graphical interpretation. By iteration of this procedure,

amplitudes could be computed as integrals over the lowest dimensional boundary cells of

moduli space (moduli space “effective vertices”).3

4.3 Example: tree diagrams

The most elementary examples of connected Feynman graphs are tree diagrams. The

vertices (insertions) at the “endpoints” of the tree are connected to the rest of the diagram

only by a single internal line (so they have internal valency 1), and they are linked to

at least two external lines (external valency ≥ 2). “Internal” branching vertices (internal

valency ≥ 3) may or may not have a non-zero external valency as well. Finally, there are

vertices with internal valency two and external valency ≥ 1.

To cover the whole equivalence class g of the tree, we have to sum over all topologically

inequivalent groupwise permutations of the external legs whenever several external legs are

located on insertions with the same valences; insertions with internal valency 2 are allowed

to slide all over the tree. As the external legs are all distinguishable, there are no symmetries

of the graph, so the symmetry factor equals 1.

Let there be n insertions with internal valency 2. We denote their positions on the

metric graph by tj ∈ g(τ), and the total external momentum entering at insertion j by kj .

Removing these, let there be V vertices left with internal valency other than 2, connected

by P lines. Denote the lengths of these lines by the moduli τj ∈ R+. Clearly, the dimension

of the graph (the number of continuous moduli) is dim g = n + P .

Given any two insertions t1, t2 ∈ g(τ), we want to find the interaction potential for the

momenta entering at these insertions (the charges). We have to determine

f(t) = △−1(δt1 − δt2)(t), t ∈ g(τ).

3Such iteration might require very particular relations between the coupling constants and masses of the

system, as in non-Abelian gauge theories. The case of gauge theories is indeed special: Here, the couplings

are fixed ab initio by the requirement of gauge invariance.
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The function f(t) is easily characterized: Let T (t1, t2) denote the path from t1 to t2, and

|T (t1, t2)| be its length (in terms of the moduli τj). f(t) is continuous by definition; it

is piecewise constant on all segments of the graph except T (t1, t2); and on T (t1, t2) it

increases linearly with the distance from t1. The absolute value of f(t) is unimportant, so

an arbitrary constant may be added. It follows that

ϕ(t1, t2) = 〈δt1 − δt2 ,△
−1(δt1 − δt2)〉 = f(t1) − f(t2) = −|T (t1, t2)|.

For the effective normalisation, one can see that Z−1
eff (g(τ)) = 1 by starting to integrate

the formula given in lemma 2 at the vertices forming the tips of the tree, and working

down towards v1 which is an arbitrary vertex on the tree. The integrals then always cancel

exactly the prefactor.

So for a tree diagram, we find the amplitude

Gtree(k1, . . . , kn) = (2π)
nd
2 (2π)dδ(d)





∑

j

kj





(

∏

vertices v

−cv

)

∑

perm.s of kj

∫ ∞

0
dP τ

∫

g(τ)
dnt exp





∑

v<w

(kv · kw)|T (tv , tw)| − m2
∑

j

τj



 .

It is an amusing exercise to see how this expression resolves into the correct amplitude

upon integrating the moduli.

4.4 Example: the one-loop “spider” diagram

The simplest diagram containing a loop integration is the one-loop amplitude with an

arbitrary number n of external legs4 coupled by three-valent vertices c3 directly to the

loop. The class g contains all permutations of the order of external legs; there is a cyclic

symmetry.

Let the incoming momenta be k1, . . . , kn. Let tj be the coordinate which describes the

position of the j-th vertex entering the loop with respect to some fixed parametrisation of

the loop. Furthermore, let τ be the total length of the loop. The true moduli are given by

the distances between the insertions; so if we integrate the coordinates tj instead, we have

to include a factor 1
τ to account for the arbitrary choice of an origin of the parametrisation.

For the normalisation, one finds

Z−1
eff (g(τ)) =

(

1

4πτ

)d/2

by convolution of the Wiener kernels of lemma 2. Assume that ti < tj. Then,

△−1(δti − δtj )(t) =



















(

tj−τ+ti
2 − t

)

tj−ti
τ if t < ti,

(

t −
ti+tj

2

)

τ−tj+ti
τ if ti ≤ t < tj ,

(

tj+τ+ti
2 − t

)

tj−ti
τ if tj ≤ t

4A yet unknown species of spiders.
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at the point with coordinate t with respect to the parametrisation. This is easily checked

by applying △. Thus,

ϕ(ti, tj) =〈δti − δtj ,△
−1(δti − δtj )〉 = −

|tj − ti|(τ − |tj − ti|)

τ
.

In the last form, the potential is valid also for ti > tj . As the orientation of the loop

parametrisation is arbitrary, we have to include a symmetry factor 1
2 , and we get a total

amplitude

G1-loop(k1, . . . , kn) = (2π)
nd
2 (2π)dδ(d)

(

∑

j

kj

)

(−c3)
n
∫ ∞

0

dτ

2τ

(

1

4πτ

)d/2

exp
(

−m2τ
)

∫ τ

0
dnt exp





∑

i<j

(ki · kj)
|tj − ti|(τ − |tj − ti|)

τ



 . (4.16)

Written in this form, it is plausible that the presummation of sufficiently large equivalence

classes of diagrams amounts to a stringent organisation of the amplitudes. Had we used

the equivalence class scheme B (the world line formalism), the cyclic order of external

legs entering the loop would be unalterable, and we should sum explicitly over all such

orderings.

This provides a simple example illustrating how renormalisation fits into the scheme:

By rescaling the parameters tj → τtj, the integral takes the form

G1-loop(k1, . . . , kn) = (2π)
nd
2 (2π)dδ(d)

(

∑

j

kj

)

(−c3)
n
∫ ∞

0

dτ

2τ

(

1

4πτ

)d/2

τn

exp
(

−m2τ
)

∫ 1

0
dnt exp



τ
∑

i<j

(ki · kj)|tj − ti|(1 − |tj − ti|)



 .

The integrand has a power series expansion in τ around the origin

cn−d/2−1τ
n−d/2−1 + cn−d/2τ

n−d/2 + cn−d/2+1τ
n−d/2+1 + . . . ; (4.17)

the integral diverges at τ → 0 if n − d/2 ≤ 0. This is a UV divergence, by the reasoning

of section 4.2. The graphs containing the counterterms are found in the moduli space cell

τ → 0. They are just given by formally integrating the divergent terms of the power series

expansion (4.17):

Gn−d/2−1(k1, . . . , kn) = − (2π)
nd
2 (2π)dδ(d)

(

∑

j

kj

)

(−c3)
n
∫ ∞

0

dτ

2τ

(

1

4πτ

)d/2

τn,

Gn−d/2(k1, . . . , kn) = − (2π)
nd
2 (2π)dδ(d)

(

∑

j

kj

)

(−c3)
n
∫ ∞

0

dτ

2τ

(

1

4πτ

)d/2

τn+1



−m2 + (ki · kj)

∫ 1

0
dnt

∑

i<j

|tj − ti|(1 − |tj − ti|)



 ,

etc. Naturally, the counterterms for higher order divergences are of derivative type. With

these subtractions in place, the total amplitude is finite.
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τ2 τ3τ1

m3

m′
2

m2

v1 v2

v4

v3

k1

k2

(a)
m′

1

t2

m1

t1

m2 m3

m1

(b)

k2

k1

v2

v1

v4

v3

m1

m′
1 t′1

t1

Figure 6: Notation in the two-loop computation. v1, v2: external insertions. k1, k2: external

momenta. v3, v4: internal vertices. τ1, τ2, τ3 (inset): length moduli of branches between v1 and v2.

t1, t
′

1, t2: length moduli of segments between vertices / insertions. m1, m2, . . . , arrows: gradients of

the piecewise linear function △−1

v (δv1
− δv2

)(v) along the branches of the graph.

4.5 Example: two-loop self-energy graph

At two-loop level, the sliding of external legs over internal vertices is important. We discuss

the contribution of the graph given in figure 6 to the self-energy in scalar φ3-theory.

There are two different topologies: Both external insertions v1 and v2 may slide along

the same internal line between the two vertices (a), or they may be along two separate

lines (b). With the moduli parametrising the metric distances along the propagators as

defined in the figure, the first task is the computation of the pair potentials ϕ(a)(v1, v2)

resp. ϕ(b)(v1, v2), as defined in (4.3).

We need to compute the action of the inverse Laplacian △−1
v (δv1 − δv2)(v) for points

v ∈ g(τ) on the graph. We surely know that this is a continuous function, piecewise

linear between vertices. Denote the respective gradients ∂v[△
−1
v (δv1 − δv2)](v) in (a) by

m1,m
′
1,m2,m

′
2,m3, as in the figure. These gradients fulfill the equations

m′
1 − m1 = 1

m′
2 − m2 = −1

t1m1 + (τ1 − t1)m
′
1 = t2m2 + (τ2 − t2)m

′
2 = τ3m3

m1 + m2 + m3 = 0

(the first pair of equations normalises the δ source terms; the second pair says that the

potential is continuous at the vertices v3 and v4; and the last equation declares that v4

is uncharged). There is a another similar but redundant condition at the vertex v3. The

solution is, with ∆ = τ1τ2 + τ1τ3 + τ2τ3,

m′
1 =

(τ2 + τ3)t1 + τ3t2
∆

m1 = m′
1 − 1

m′
2 = −

(τ1 + τ3)t2 + τ3t1
∆

m2 = m′
2 + 1

m3 =
τ1t2 − τ2t1

∆
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For the pair potential between insertions v1 and v2 in case (a), this implies

ϕ(a)(v1, v2) =〈δv1 − δv2 ,△
−1(δv1 − δv2)〉 = t1m1 − t2m2 (4.18)

= −
τ1(τ2 − t2)t2 + τ2(τ1 − t1)t1 + τ3(t1 + t2)(τ1 + τ2 − t1 − t2)

∆
.

A similar computation for case (b) reveals that

ϕ(b)(v1, v2) = −
t′1 [(τ2 + τ3)(τ1 − t′1) + τ2τ3]

∆
. (4.19)

This second potential does not depend on the modulus t1.

These potentials are really only pieces or “branches” of a single potential function

ϕ(v1, v2), continuous for all v1 × v2 ∈ g(τ) × g(τ). They can be connected e.g. when the

external insertion v2 crosses through v3:

lim
v2→v3

ϕ(a)(v1, v2) = lim
t2→τ2

ϕ(a)(v1, v2) = −
(τ1 − t1) [(τ2 + τ3)t1 + τ2τ3]

∆

= lim
t′1→τ1−t1

ϕ(b)(v1, v2) = lim
v2→v3

ϕ(b)(v1, v2).

A second way to pass from sheet (a) to sheet (b) is to pass v1 through v4 and use the

symmetry of the graph. Again, the potential is continuous.

The computation of the normalisation constant Z−1
eff by equation (4.13) is straightfor-

ward. There are V = 2 vertices in the naked graph; the matrix C according to (4.10) is

C =
1

2

( 1

τ1
+

1

τ2
+

1

τ2

)

·

(

1 −1

−1 1

)

;

and thus with ‖C‖+ = det(C + eeT ) = 2( 1
τ1

+ 1
τ2

+ 1
τ2

), the normalisation becomes

Z−1
eff (g(τ)) =

(

1

32π2∆

)d/2

.

The symmetry factors for both graphs are 2. The total amplitude is therefore

G2-loop(k1, k2) = (2π)2dδ(d)
(

k1 + k2

) (−c3)
4

2

∫ ∞

0
d3τ

(

1

32π2(τ1τ2 + τ1τ3 + τ2τ3)

)d/2

e−m2(τ1+τ2+τ3) ·

{

∫ τ1

0
dt1

∫ τ2

0
dt2 exp

(

−(k1 · k2)ϕ(a)(v1, v2)
)

+

∫ τ1

0
dt′1 (τ1 − t′1) exp

(

−(k1 · k2)ϕ(b)(v1, v2)
)

}

. (4.20)

The factor τ1 − t′1 =
∫ τ1−t′1
0 dt1 comes from integrating the irrelevant modulus t1.
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4.6 Particles of different mass

We comment briefly on how to include particles of different mass. For being explicit,

consider the self-energy diagram figure 1. Assume that the internal propagators carry

different masses m1 and m2, and that the vertices always couple to one external and one

of each particles of masses m1, m2. The total mass exponential can then be written

e−m2
1τ1−m2

2τ2 + e−m2
2τ1−m2

1τ2

= Tr

{(

e−m2
1τ1 0

0 e−m2
2τ1

)(

0 1

1 0

)(

e−m2
1τ2 0

0 e−m2
2τ2

)(

0 1

1 0

)}

.

The first and third matrix are representing the propagators; the other two matrices are the

vertices “switching” between different masses. This might seem overly formal. However, it

is only consequent. Namely, observe that this is a trace over a path-ordered exponential

Tr Pg(τ)

{(

0 1

1 0

)

t1

(

0 1

1 0

)

t2

exp−

∫ τ

0
dt

(

m2
1 0

0 m2
2

)}

,

where t1 and t2 denote the locations of the operator insertions, τ is the total length of the

loop, and Pg(τ) is the path ordering on g(τ). This construction can be generalised to more

complex graphs (although a matrix notation for the vertices is clearly not possible). The

resulting mass exponential is then part of the integrand of the moduli space integral, in the

spirit of the world graph formalism. Similar techniques can be applied if the propagators are

gauge bosons in the adjoint representation of some local gauge group (for the application

of path ordering to inclusion of background potentials see [7]).

5. Vector and tensor particles and the dipole method

So far, we have considered scalar interaction vertices and scalar particles. In general,

vertices might contain derivatives of the adjoining propagators; when tensor particles are

involved, their propagators will contain supplementary polynomials in their momenta, and

the propagator term (q2
j + m2)−1 might be raised to a higher power. While the latter

can be generated by including additional factors τj in the measure on moduli space (cf.

section 2.2), there remains a prefactor multiplying the integrand of a Feynman amplitude

which is a polynomial in the momenta qi of the propagators and ki of the external legs.

We develop here a formalism which introduces a generating function for the prefactor, i.e.

a function

G(k1, . . . , kn; y1, . . . , yp)

where each yi is associated to one internal propagator of the graph. For yi ≡ 0 the function

G is equal to the usual correlation function without prefactor

G(k1, . . . , kn; 0, . . . , 0) = G(k1, . . . , kn) =

∫

dℓdp loopF (k, ploop);

here ploop
i are ℓ loop momentum variables, to be integrated over. Let P (q1, . . . , qp) be a

polynomial of the internal momenta along the propagators (in general we will not assume
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qj

s−j s+
j

Figure 7: Insertion of a test dipole onto an internal propagator.

that vector indices are contracted completely). If we substitute the (components of the)

y-derivatives for the internal momenta q in the polynomial P and apply it to the generating

function

P

(

i
∂

∂y

)

G(k; y)

∣

∣

∣

∣

y=0

=

∫

dℓdp loopP (q)F (k, ploop), (5.1)

we should obtain the prefactor given by the polynomial P (q). For tree graphs, the momenta

qi are constant; for loop graphs, there is an integration over loop momenta.

There exists a method in the “vector charge” framework to reproduce the correspond-

ing amplitudes. It utilizes the insertion of an additional pair of oppositely charged external

legs on each propagator - a dipole. We are given a Feynman graph g(τ) containing various

propagators and vertices in the Schwinger parametrised form with the loop momenta not

yet integrated. Pick a propagator j transporting momentum qj from vertex v1 to vertex

v2. On j, we want to insert a dipole with strength
iyj

2 . The dipole is constructed from two

infinitesimally separated sources: Source s+
j located arbitrarily within the propagator and

source s−j at distance ε away from s+
j in the direction of qj as we define it (see figure 7).

As ε is supposed to be infinitesimal, s−j will always fit on the propagator. In the limit

ε → 0, the position of the dipole on the propagator becomes sj. At s+
j , momentum

iyj

2ε

flows into the graph; at s−j , momentum
iyj

2ε flows out of the graph; so the total momentum

is conserved. The “dipole moment” is the vector µj = ε ·
iyj

2ε =
iyj

2 . Writing down the

local momentum balance, it is clear that there is a momentum transfer qj +
iyj

2ε between

s+
j and s−j . In addition, we multiply the integrand by a “dipole self-energy renormalisation

constant” e−
y2
j

4ε . Without the dipole, the piece between the insertions naturally contributes

e−εq2
j to the Schwinger parametrised path integral. The total effect of the dipole including

the self-energy renormalisation is a correction factor

eεq2
j−ε(qj+

iyj

2ε
)2−

y2
j

4ε = e−iyj ·qj .

This shows that the amplitude is indeed a generating function for polynomials in qj by (5.1).

We saw that after integration of the loop momenta, the exponent in the Schwinger

integrand (4.5) is equivalent to the potential of an ensemble of vector charges defined by

the external momenta. The dipole insertions fit quite naturally into this picture. Because

they can be assembled from “elementary” vector charges, the available ingredients of the

formalism are completely sufficient to handle them. All we have to do is calculate the addi-

tional potential terms which arise due to the insertion of the dipoles (for each propagator).
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It is advantageous to compute the dipole-scalar and dipole-dipole pair potentials before

summing over all pairs. We define

ϕds(sj, vi) = lim
ε→0

1

ε

(

ϕ(s+
j , vi) − ϕ(s−j , vi)

)

= −
∂

∂sj
ϕ(sj, vi) (5.2)

ϕdd(sj , si) = lim
ε→0

1

ε2

(

ϕ(s+
j , s+

i ) − ϕ(s−j , s+
i ) − ϕ(s+

j , s−i ) + ϕ(s−j , s−i )
)

= −
∂

∂si
ϕds(sj, si) =

∂2

∂sj∂si
ϕ(sj , si). (5.3)

where the last equation is valid only for i 6= j (the limits ε → 0 are allowed because it

is easy to see that both potentials are of order O(ε0) and the higher-order terms are not

relevant). The dipole-scalar energy is µi · kjϕ
ds(sj, vi), and similarly for dipole-dipole. For

the self-interaction of a dipole, we define

ϕd-self
ε (sj) = −

1

ε2
ϕ(s−j , s+

j ). (5.4)

The full generating function is then obtained by inserting the factor

exp−

[

i

2

∑

prop.s j

∑

vert.s i

(yj · ki)ϕ
ds(sj , vi) +

(

i

2

)2
∑

prop.s i < j

(yi · yj)ϕ
dd(si, sj)

+

(

i

2

)2
∑

prop.s j

y2
j

(

ϕd-self
ε (sj) −

1

ε

)]

.

By construction, this must be independent of ε, and even of the coordinates sj of the dipole

insertions on the propagators.5

We apply this formula to the loop graph. We keep the nomenclature of section 4.4

introducing the loop graph and insert the dipoles at the general loop coordinates sj. The

dipoles are oriented along the canonical loop direction. We introduce the oriented distance

function

[0, T [ ∋ τji = (sj − vi) mod T.

The relevant potentials are then

ϕ(vj , vi) = −
τji(T − τji)

T
, (5.5)

ϕds(sj, vi) = −
∂

∂sj

−τji(T − τji)

T
=

T − 2τji

T
,

ϕdd(sj , si) = −
∂

∂si

T − 2τji

T
= −

2

T
,

ϕd-self
ε (sj) =

1

ε

T − ε

T
.

The dipole self-energy is divergent as ε → 0; however if we include the additional factor

e−
y2
j

4ε in the action, then the “renormalised” self-energy

ϕd-self(ren)(sj) = lim
ε→0

(

ϕd-self
ε (sj) −

1

ε

)

= −
1

T

5As the field is constant along the propagator.
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has a reasonable limit for vanishing dipole extension. The complete generating factor is

therefore

exp







−
i

2

n
∑

i,j=1

(ki · yj)
T − 2τji

T
−

1

4T

(

n
∑

j=1

yj

)2







.

The generating function is therefore

G1-loop(k1, . . . , kn; y1, . . . , yn) = (2π)dδ(d)
(

∑

j

kj

)

(−c3)
n
∫ ∞

0

dT

2T

(

1

4πT

)d/2

exp
(

−m2T
)

∫ T

0
dnt exp







∑

i<j

(ki · kj)
|tj − ti|(T − |tj − ti|)

T







exp







−
i

2

n
∑

i,j=1

(yj · ki)
T − 2τji

T
−

1

4T

(

n
∑

j=1

yj

)2







,

Due to the fact that we chose the test dipoles to be imaginary, the last factor is well-behaved

for real yj when integrating the modulus T . Note, however, that there is an essential

singularity at
∑

j yj = 0 when we allow complex yj . As we compute higher moments of

the propagator momenta, the superficial degree of divergence of the Feynman amplitude

increases until the amplitude needs to be regularised in order to converge; in terms of

the generating function formalism, this implies that higher derivatives of the generating

function are divergent at the origin. A way out offering itself almost naturally in formalisms

embracing Schwinger parametrisation is dimensional regularisation (see e.g. [5, 1]).

Tree graphs. On tree graphs, one computes that the generating factor agrees precisely

with the expected form

exp−i
∑

prop. j

yj · qj.

There are no quadratic terms.

One-loop two-point function. This is the simplest non-trivial example. The diagram

consists of a loop with two insertions, connected by two propagators which we will call left

(1) and right (2). We choose as moduli the lengths τ1 and τ2 of the left and right branch.

Rather than keeping two external momenta and imposing momentum conservation, we

assume that there is one momentum k entering and leaving the loop. The momenta q1

and q2 are defined parallel to the canonical loop coordinate running around the loop and

starting at the insertion where the external momentum k enters the loop. The dipole on

the left branch is at coordinate s1, on the right branch at coordinate s2. The generating

factor is then (with T = τ1 + τ2)

e−
i
2

[

(y1·k)
T−2s1

T
+(y2·k)

T−2s2
T

−(y1·k)
T−2(s1+τ2)

T
−(y2·k)

T−2(s2−τ1)
T

]

− 1
4T

(y1+y2)
2

= e−i
(y1·k)τ2−(y2·k)τ1

T
− 1

4T
(y1+y2)2 .
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We obtain the generating function (without coupling constants)

G1-loop(k; y1, y2) =
(2π)d

2

∫ ∞

0
dτ1

∫ ∞

0
dτ2

(

1

4π(τ1 + τ2)

)d/2

e−m2(τ1+τ2)

e
− τ1τ2

τ1+τ2
k2−i

y1τ2−y2τ1
τ1+τ2

·k− 1
4(τ1+τ2)

(y1+y2)2 . (5.6)

Relation to pre-integrated Schwinger representation. Of course, there is no magic

in here. It is instructive to inspect the Fourier transform of the generating function

G1-loop(k; y1, y2) with respect to the variables y1, y2. This will yield a kernel whose moments

are equal to the derivatives of the generating function at y1 = y2 = 0; we have

(i∂1)
n1(i∂2)

n2G1-loop(k; y1, y2)|y1=y2=0

= (2π)−2d

∫

ddq 1 ddq2 qn1
1 qn2

2

∫

ddy 1 ddy2 eiq1·y1+iq2·y2G1-loop(k; y1, y2).

One finds with (5.6)

(2π)−2d

∫

ddy 1 ddy2 eiq1·y1+iq2·y2G1-loop(k; y1, y2)

=
1

2
δ(d)(k + q2 − q1)

∫ ∞

0
dτ1

∫ ∞

0
dτ2 e−τ1(q2

1+m2)−τ2(q2
2+m2).

This is hardly a surprising result; the generating function is nothing more than the Fourier

transform of the Schwinger parametrised amplitude, before integrating out the moments

along the propagators. In the general case, this gives us a convenient way to obtain the

generating functional.

6. Summary and outlook

We have demonstrated an “integrated” approach to the Schwinger parametrisation of con-

nected Feynman amplitudes, encompassing the graph as an entity (world graph) by intro-

ducing specific boundary conditions at the vertices rather than breaking the graph at these

points. With the necessary caveats of interpretation, it can be viewed as a diffusion pro-

cess of splitting and re-fusing particles. The summation over Feynman graphs in order to

obtain the total amplitude is thereby converted into a summation over equivalence classes

of graphs. The Schwinger parameters are generalised to “Schwinger moduli” in the cells of

moduli space corresponding to the equivalence classes. The vertices turn out to be by no

means special points on the graph.

The prefactor Z0(g(τ)) providing the necessary normalisation is difficult to determine

in general (although in specific cases, like the spider graph, it is clear). It would be desirable

to find a closed formula for the determinant of the graph Laplacian, bringing us in a position

to determine explicitly Z0(g(τ)).

Renormalisation is naturally included into this scheme by the assumption that the

cancellation of infinities is local in moduli space. For this idea, the concept of a cell

complex structure of moduli space is critical. As long as amplitudes are not renormalised
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explicitly, the assumption of non-integer space dimensions is a solution adapted very well

to the formalism.

The analogy to a system of charges on a graph which is a crucial step in the proof

offers a simple way to include vector and tensor particles by way of a generating function

formalism. The stress again lies not on the computational advantages of the scheme, but

rather on the conceptual side: It is not necessary to sprinkle new terms over the path

integral formula which do not have an intrinsic meaning. Rather, the generating function

has a natural interpretation as containing test dipoles.

On the speculative side, we suggest the possibility of transforming by integration by

parts the integral over the total moduli space cell complex associated to a correlation into

a sum of integral contributions from minimal and maximal cells only. This might be of

special interest in the treatment of non-Abelian gauge theories.

Looking further, the charge formalism carries the promise of a simple treatment of

graphs containing particles carrying a “real world” electric charge. Such particles would

bring along a cloud of photons coupling to the graph by a derivative coupling; the ex-

ternal photons would be represented by dipoles on the graph in the “charge formalism”.

Consequently, these dipoles would shield the pair potential along the world graph. In a

similar vein, it might be advantageous to examine multi-particle production (which would

presumably make the potential on the graph slightly random, like in a charged, grainy

background medium).

The main motivation behind this work lies not in such “classical” issues, however; we

hope that we might contribute to the rephrasing of the Schwinger parametrised perturba-

tion amplitude into a bulk amplitude in the framework of the AdS/CFT correspondence.
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